Which medicines, taken by mouth or injected, work best to treat a skin condition called plaque psoriasis?

Key messages

- After six months of treatment, medicines called 'biologics' seem to work best to clear patches of psoriasis on the skin.

- Longer studies are needed to assess the benefits and potential harms of longer treatment with medicines that are injected or taken by mouth to treat psoriasis.

- More studies are needed that compare these types of medicines directly against each other.

What is psoriasis?

Psoriasis is an immune condition that affects the skin, and sometimes the joints. Psoriasis speeds up the production of new skin cells, which build up to form raised patches on the skin known as 'plaques'. Plaques can also be flaky, scaly, itchy, and appear red on white skin, and as darker patches on darker skin tones. Plaque psoriasis is the most common form of psoriasis.

How is psoriasis treated?

Treatments for psoriasis depend on how bad the symptoms are. Around 10% to 20% of people with moderate or severe psoriasis will need to take medicines that affect their immune system, to help control the psoriasis. These medicines are called systemic treatments, because they affect the whole body. These are usually taken by mouth (oral) or injected.

Why did we do this Cochrane Review?

There are three different types of systemic medicines to treat psoriasis:

- 'biologics' - proteins, such as antibodies, that affect biological targets called interleukins and cytokines (parts of the immune system that affect how cells behave);
- small molecules - organic compounds that affect immune cells; examples include apremilast and tofacitinib; and
- non-biologic medicines - medicines that have been in use for a long time to treat psoriasis, such as methotrexate, ciclosporin and retinoids.

We wanted to find out about the benefits and potential harms of taking systemic medicines to treat psoriasis, and to see if some medicines work better than others.

What did we do?

We searched for studies that tested systemic medicines to treat plaque psoriasis.

How up to date is this review?

We include evidence up to September 2020.

What did we find?

We found 158 studies, including 18 new studies, since our last search. The studies tested 20 different medicines, covering 57,831 people with psoriasis (average age 45 years) and lasted from 2 to 6 months. Of 132 studies that reported their source of funding, a pharmaceutical company provided funding for 123 studies and nine were funded by non-commercial organisations or academic institutions.

Most studies compared the systemic medicine against a placebo (a 'dummy' treatment that does not contain any medicine but looks identical to the medicine being tested). They used a common measurement scale called the PASI (psoriasis area and severity index) to compare how well each medicine cleared psoriasis plaques from the skin, looking for a 90% improvement (called 'PASI 90'). Few studies reported on participants' well-being.

We compared all the medicines with each other using a mathematical method called a network meta-analysis.

What are the main results of our review?

All the medicines tested worked better than a placebo to treat psoriasis (measured as a 90% improvement in PASI).

Biologic medicines (that targeted interleukins 17, 23 and 12/23, and the cytokine TNF-alpha) treated psoriasis better than the small-molecule and non-biologic medicines.

Compared with placebo, seven biologic medicines worked best to treat psoriasis, with little difference between them:

- infliximab (targets TNF-alpha);

- ixekizumab, bimekizumab, secukinumab and brodalumab (target interleukin-17); and

- risankizumab and guselkumab (target interleukin-23).

We found no significant difference in the numbers of serious unwanted effects for all systemic medicines tested when compared with a placebo. However, the studies did not consistently report results about safety, such as serious unwanted effects. We therefore could not create a reliable risk profile of systemic medicines.

Limitations of the evidence

We are confident in our results for the seven biologic medicines that worked best to treat psoriasis. We are less confident in our results for serious unwanted effects, because of the low number of unwanted effects reported.

We are also less confident in the results for the non-biologic medicines because of concerns about how some of the studies were conducted. Further research is likely to change these results.

We did not find many studies for some of the 20 medicines included in our review. Participants in the studies often had severe psoriasis at the start of the study, so our results may not be useful for people whose psoriasis is less severe. Our findings relate only to treatment with systemic medicines for up to six months at most.

Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.

Authors' conclusions: 

Our review shows that compared to placebo, the biologics infliximab, ixekizumab, risankizumab, bimekizumab, secukinumab, guselkumab and brodalumab were the most effective treatments for achieving PASI 90 in people with moderate-to-severe psoriasis on the basis of moderate- to high-certainty evidence. This NMA evidence is limited to induction therapy (outcomes were measured from 8 to 24 weeks after randomisation) and is not sufficient for evaluation of longer-term outcomes in this chronic disease. Moreover, we found low numbers of studies for some of the interventions, and the young age (mean age of 45 years) and high level of disease severity (PASI 20 at baseline) may not be typical of patients seen in daily clinical practice.

Another major concern is that short-term trials provide scanty and sometimes poorly-reported safety data and thus do not provide useful evidence to create a reliable risk profile of treatments. We found no significant difference in the assessed interventions and placebo in terms of SAEs, and the evidence for all the interventions was of low to moderate quality. In order to provide long-term information on the safety of the treatments included in this review, it will also be necessary to evaluate non-randomised studies and postmarketing reports released from regulatory agencies.

In terms of future research, randomised trials directly comparing active agents are necessary once high-quality evidence of benefit against placebo is established, including head-to-head trials amongst and between non-biological systemic agents and small molecules, and between biological agents (anti-IL17 versus anti-IL23, anti-IL23 versus anti-IL12/23, anti-TNF alpha versus anti-IL12/23). Future trials should also undertake systematic subgroup analyses (e.g. assessing biological-naïve participants, baseline psoriasis severity, presence of psoriatic arthritis, etc.). Finally, outcome measure harmonisation is needed in psoriasis trials, and researchers should look at the medium- and long-term benefit and safety of the interventions and the comparative safety of different agents.

Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.

Read the full abstract...

Psoriasis is an immune-mediated disease for which some people have a genetic predisposition. The condition manifests in inflammatory effects on either the skin or joints, or both, and it has a major impact on quality of life. Although there is currently no cure for psoriasis, various treatment strategies allow sustained control of disease signs and symptoms. Several randomised controlled trials (RCTs) have compared the efficacy of the different systemic treatments in psoriasis against placebo. However, the relative benefit of these treatments remains unclear due to the limited number of trials comparing them directly head-to-head, which is why we chose to conduct a network meta-analysis.


To compare the efficacy and safety of non-biological systemic agents, small molecules, and biologics for people with moderate-to-severe psoriasis using a network meta-analysis, and to provide a ranking of these treatments according to their efficacy and safety.

Search strategy: 

For this living systematic review we updated our searches of the following databases monthly to September 2020: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. We searched two trials registers to the same date. We checked the reference lists of included studies and relevant systematic reviews for further references to eligible RCTs.

Selection criteria: 

Randomised controlled trials (RCTs) of systemic treatments in adults (over 18 years of age) with moderate-to-severe plaque psoriasis or psoriatic arthritis whose skin had been clinically diagnosed with moderate-to-severe psoriasis, at any stage of treatment, in comparison to placebo or another active agent. The primary outcomes of this review were: the proportion of participants who achieved clear or almost clear skin, that is, at least Psoriasis Area and Severity Index (PASI) 90 at induction phase (from 8 to 24 weeks after the randomisation), and the proportion of participants with serious adverse events (SAEs) at induction phase. We did not evaluate differences in specific adverse events.

Data collection and analysis: 

Several groups of two review authors independently undertook study selection, data extraction, 'Risk of bias' assessment, and analyses. We synthesised the data using pair-wise and network meta-analysis (NMA) to compare the treatments of interest and rank them according to their effectiveness (as measured by the PASI 90 score) and acceptability (the inverse of serious adverse events).

We assessed the certainty of the body of evidence from the NMA for the two primary outcomes and all comparisons, according to CINeMA, as either very low, low, moderate, or high. We contacted study authors when data were unclear or missing.

We used the surface under the cumulative ranking curve (SUCRA) to infer on treatment hierarchy: 0% (treatment is the worst for effectiveness or safety) to 100% (treatment is the best for effectiveness or safety).

Main results: 

We included 158 studies (18 new studies for the update) in our review (57,831 randomised participants, 67.2% men, mainly recruited from hospitals). The overall average age was 45 years; the overall mean PASI score at baseline was 20 (range: 9.5 to 39). Most of these studies were placebo-controlled (58%), 30% were head-to-head studies, and 11% were multi-armed studies with both an active comparator and a placebo. We have assessed a total of 20 treatments. In all, 133 trials were multicentric (two to 231 centres). All but two of the outcomes included in this review were limited to the induction phase (assessment from 8 to 24 weeks after randomisation). We assessed many studies (53/158) as being at high risk of bias; 25 were at an unclear risk, and 80 at low risk. Most studies (123/158) declared funding by a pharmaceutical company, and 22 studies did not report their source of funding.

Network meta-analysis at class level showed that all of the interventions (non-biological systemic agents, small molecules, and biological treatments) were significantly more effective than placebo in reaching PASI 90.

At class level, in reaching PASI 90, the biologic treatments anti-IL17, anti-IL12/23, anti-IL23, and anti-TNF alpha were significantly more effective than the small molecules and the non-biological systemic agents.

At drug level, infliximab, ixekizumab, secukinumab, brodalumab, risankizumab and guselkumab were significantly more effective in reaching PASI 90 than ustekinumab and three anti-TNF alpha agents: adalimumab, certolizumab, and etanercept. Ustekinumab and adalimumab were significantly more effective in reaching PASI 90 than etanercept; ustekinumab was more effective than certolizumab, and the clinical effectiveness of ustekinumab and adalimumab was similar. There was no significant difference between tofacitinib or apremilast and three non-biological drugs: fumaric acid esters (FAEs), ciclosporin and methotrexate.

Network meta-analysis also showed that infliximab, ixekizumab, risankizumab, bimekizumab, secukinumab, guselkumab, and brodalumab outperformed other drugs when compared to placebo in reaching PASI 90. The clinical effectiveness of these drugs was similar, except for ixekizumab which had a better chance of reaching PASI 90 compared with secukinumab, guselkumab and brodalumab. The clinical effectiveness of these seven drugs was: infliximab (versus placebo): risk ratio (RR) 50.29, 95% confidence interval (CI) 20.96 to 120.67, SUCRA = 93.6; high-certainty evidence; ixekizumab (versus placebo): RR 32.48, 95% CI 27.13 to 38.87; SUCRA = 90.5; high-certainty evidence; risankizumab (versus placebo): RR 28.76, 95% CI 23.96 to 34.54; SUCRA = 84.6; high-certainty evidence; bimekizumab (versus placebo): RR 58.64, 95% CI 3.72 to 923.86; SUCRA = 81.4; high-certainty evidence; secukinumab (versus placebo): RR 25.79, 95% CI 21.61 to 30.78; SUCRA = 76.2; high-certainty evidence; guselkumab (versus placebo): RR 25.52, 95% CI 21.25 to 30.64; SUCRA = 75; high-certainty evidence; and brodalumab (versus placebo): RR 23.55, 95% CI 19.48 to 28.48; SUCRA = 68.4; moderate-certainty evidence. Conservative interpretation is warranted for the results for bimekizumab (as well as mirikizumab, tyrosine kinase 2 inhibitor, acitretin, ciclosporin, fumaric acid esters, and methotrexate), as these drugs, in the NMA, have been evaluated in few trials.

We found no significant difference between any of the interventions and the placebo for the risk of SAEs. Nevertheless, the SAE analyses were based on a very low number of events with low to moderate certainty for all the comparisons. Thus, the results have to be viewed with caution and we cannot be sure of the ranking.

For other efficacy outcomes (PASI 75 and Physician Global Assessment (PGA) 0/1) the results were similar to the results for PASI 90.

Information on quality of life was often poorly reported and was absent for several of the interventions.