跳转到主要内容

'Red-light cameras' cut casualty crashes at junctions with traffic lights

Road crashes are a leading cause of death and injury. One common place for these to happen is at junctions (intersections) controlled by traffic signals. 'Red-light cameras' are now widely used to identify drivers that jump ('run') red lights, who can then be prosecuted. This review looked for studies of their effectiveness in reducing the number of times that drivers drive through red lights and the number of crashes. Very little research has been done and much of it has not allowed for the statistical problems that occur when recording this kind of information. However, five studies in Australia, Singapore and the USA all found that use of red-light cameras cut the number of crashes in which there were injuries. In the best conducted of these studies, the reduction was nearly 30%. More research is needed to determine best practice for red-light camera programmes, including how camera sites are selected, signing policies, publicity programmes and penalties.

研究背景

Road crashes are a prime cause of death and disability and red-light running is a common cause of crashes at signalised intersections. Red-light cameras are increasingly used to promote compliance with traffic signals. Manual enforcement methods are resource intensive and high risk, whereas red-light cameras can operate 24 hours a day and do not involve high-speed pursuits.

研究目的

To quantify the impact of red-light cameras on the incidence and severity of road crashes and casualties, and the incidence of red-light violations.

检索策略

We searched the following electronic databases: TRANSPORT (NTIS, TRIS, IRRD,TRANSDOC), Cochrane Injuries Group Specialised Register, Cochrane Controlled Trials Register, MEDLINE, EMBASE and the Australian Transport Index. We checked the reference lists of relevant papers and contacted research and advocacy organisations.

纳入排除标准

Randomised or quasi-controlled trials and controlled before-after studies of red-light cameras. For crash impact evaluation, the before and after periods each had to be at least one year in length. For violation studies, the after period had to occur at least one year after camera installation.

资料收集与分析

Two reviewers independently extracted data on study type, characteristics of camera and control areas, and data collection period. Before-after data were collected on number of crashes by severity, collision type, deaths and injuries, and red-light violations. Rate ratio was calculated for each study. Where there was more than one, rate ratios were pooled to give an overall estimate, using a generic inverse variance method and a random-effects model.

主要结果

No randomised controlled trials were identified but 10 controlled before-after studies from Australia, Singapore and the USA met our inclusion criteria. We grouped them according to the extent to which they adjusted for regression to the mean (RTM) and spillover effects. Total casualty crashes: the only study that adjusted for both reported a rate ratio of 0.71 (95% CI to 0.55, 0.93); for three that partially adjusted for RTM but failed to consider spillover, rate ratio was 0.87 (95% CI to 0.77, 0.98); one that made no adjustments had a rate ratio of 0.80 (95% CI 0.58 to 1.12). Right-angle casualty crashes: rate ratio for two studies that partially addressed RTM was 0.76 (95% CI 0.54 to 1.07). Total crashes: the study addressing both RTM and spillover reported a rate ratio of 0.93 (95% CI 0.83 to 1.05); one study that partially addressed RTM had a rate ratio of 0.92 (95% CI 0.73 to 1.15); the pooled rate ratio from the five studies with no adjustments was 0.74 (95% CI 0.53 to 1.03). Red-light violations: one study found a rate ratio of 0.53 (95% CI 0.17 to 1.66).

作者结论

Red-light cameras are effective in reducing total casualty crashes. The evidence is less conclusive on total collisions, specific casualty collision types and violations, where reductions achieved could be explained by the play of chance. Most evaluations did not adjust for RTM or spillover, affecting their accuracy. Larger and better controlled studies are needed.

引用文献
Aeron-Thomas A, Hess S. Red-light cameras for the prevention of road traffic crashes. Cochrane Database of Systematic Reviews 2005, Issue 2. Art. No.: CD003862. DOI: 10.1002/14651858.CD003862.pub2.

我们的Cookie使用

我们使用必要的cookie来使我们的网站工作。我们还希望设置可选的分析cookie,以帮助我们进行改进。除非您启用它们,否则我们不会设置可选的cookie。使用此工具将在您的设备上设置一个cookie来记住您的偏好。您随时可以随时通过单击每个页面页脚中的“Cookies设置”链接来更改您的Cookie首选项。
有关我们使用cookie的更多详细信息,请参阅我们的Cookies页面

接受全部
配置