Clinical decision support systems for neonatal care

Clinical decision support systems (CDSS) are computer systems that bring together medical and patient information to help doctors make decisions about health care. Support systems may be helpful for managing illness and the survival of newborns in the first 28 days of life. They may also influence the performance of doctors treating these newborn infants. The review authors searched the medical literature and contacted experts to find studies on CDSS used with newborns. They identified three randomised controlled studies that met the criteria for the review. Two of these three studies were on computer-aided drug prescribing and one was on computerized physiological monitoring of newborns. One of the studies on computer-aided prescribing showed that the CDSS used resulted in fewer drug dosage errors. The studies found no other benefits. The studies did not consider long-term outcomes in the newborns, just short-term effects. Also, with rapid changes in computer technology, current CDSS are more advanced than those used in the three studies. The Cochrane review authors conclude that there is not enough data to determine whether or not CDSS are beneficial for newborn care.

Authors' conclusions: 

There are very limited data from randomised trials on which to assess the effects of clinical decision support systems in neonatal care. Further evaluation of CDSS using randomised controlled trials is warranted.

Read the full abstract...
Background: 

Clinical decision support systems (CDSS) are computer-based information systems used to integrate clinical and patient information to provide support for decision-making in patient care. They may be useful in aiding the diagnostic process, the generation of alerts and reminders, therapy critiquing/planning, information retrieval, and image recognition and interpretation. CDSS for use in adult patients have been evaluated using randomised control trials and their results analysed in systematic reviews. There is as yet no systematic review on CDSS use in neonatal medicine.

Objectives: 

To examine whether the use of clinical decision support systems has an effect on
1. the mortality and morbidity of newborn infants and
2. the performance of physicians treating them

Search strategy: 

The standard search method of the Cochrane Neonatal Review Group was used. Searches were made of the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 2, 2007), MEDLINE (from 1966 to July 2007), EMBASE (1980 - July 2007), CINAHL (1982 to July 2007) and AMED (1985 to July 2007).

Selection criteria: 

Randomised or quasi-randomised controlled trials which compared the effects of CDSS versus no CDSS in the care of newborn infants. Trials which compared CDSS against other CDSS were also considered. The eligible interventions were CDSS for computerised physician order entry, computerised physiological monitoring, diagnostic systems and prognostic systems.

Data collection and analysis: 

Studies were assessed for eligibility using a standard pro forma. Methodological quality was assessed independently by the different investigators.

Main results: 

Two studies fitting the selection criteria were found for computer aided prescribing and one study for computer aided physiological monitoring.

Computer-aided prescribing: one study (Cade 1997) examined the effects of computerised prescribing of parenteral nutrition ordering. No significant effects on short-term outcomes were found and longer term outcomes were not studied. The second study (Balaguer 2001) investigated the effects of a database program in aiding the calculation of neonatal drug dosages. It was found that the time taken for calculation was significantly reduced and there was a significant reduction in the number of calculation errors.

Computer-aided physiological monitoring: one eligible study (Cunningham 1998) was found which examined the effects of computerised cot side physiological trend monitoring and display. There were no significant effects on mortality, volume of colloid infused, frequency of blood gases sampling (samples per day) or severe intraventricular haemorrhage (Papile Grade IV). Published data did not permit us to analyse effects on long-term neurodevelopmental outcome.