Larviciding to control malaria

What was the aim of this review?

Larviciding is the regular application of microbial or chemical insecticides to water bodies or water containers. The aim of larviciding is to reduce the adult population of mosquitoes by killing the aquatic immature forms, so that fewer will develop into adults. This should reduce the number of mosquitoes that bite and infect humans with malaria.

Key messages

All four studies included in this review distributed larvicides manually. Hand larviciding of small mosquito habitats may be effective in preventing malaria. Only one study was conducted in an area where larval habitats spanned a large area and this study found no effect of larviciding.

What was studied in the review?

We searched for trials that evaluated the impact of larviciding, using a microbial agent or chemical insecticide on malaria transmission. We considered effects on both human health outcomes and on mosquito populations.

What were the main results of the review?

Evidence from three studies shows that larviciding may decrease at least one malaria disease outcome in some studies, and this was in areas where the mosquito aquatic habitats were less than 1 km2 (low-certainty evidence). We do not know if larviciding in large water bodies shows an impact on malaria based on results from one study in The Gambia (very low-certainty evidence).

How up to date is the review?

We searched for relevant trials up to 6 June 2019.

Authors' conclusions: 

Most controlled studies on larviciding have been performed with microbial agents. Ground larviciding for non-extensive larval habitats may have an effect on malaria transmission, and we do not know if there is an effect in large-scale aquatic habitats. We found no studies using larviciding application techniques that could cover large aquatic habitats, such as aerial spraying using aircraft.

Read the full abstract...

Larviciding refers to the regular application of chemical or microbial insecticides to water bodies or water containers to kill the aquatic immature forms of the mosquito (the larvae and pupae).


To summarize research evidence evaluating whether larviciding with chemical or microbial insecticides prevents malaria transmission.

Search strategy: 

We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE; Embase; CAB Abstracts; LILACS; the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP);; and the ISRCTN registry up to 6 June 2019.

Selection criteria: 

We included cluster-randomized controlled trials (cRCTs), interrupted time series (ITS), randomized cross-over studies, non-randomized cross-over studies, and controlled before-and-after studies (CBAs) that compared larviciding with no larviciding.

Data collection and analysis: 

We independently assessed trials for eligibility and risk of bias, and extracted data. We assessed the certainty of evidence using the GRADE approach.

Main results: 

Four studies (one cRCT, two CBAs, and one non-randomized cross-over design) met the inclusion criteria. All used ground application of larvicides (people hand-delivering larvicides); one evaluated chemical and three evaluated microbial agents. Studies were carried out in The Gambia, Tanzania, Kenya, and Sri Lanka. Three studies were conducted in areas where mosquito aquatic habitats were less extensive (< 1 km²), and one where habitats were more extensive (> 1 km²; a cross-over study from The Gambia).

For aquatic habitats of less than 1 km², one cRCT randomized eight villages in Sri Lanka to evaluate chemical larviciding using insect growth regulator; and two CBA studies undertaken in Kenya and Tanzania evaluated microbial larvicides. In the cRCT, larviciding across all villages was associated with lower malaria incidence (rate ratio 0.24, 4649 participants, low-certainty evidence) and parasite prevalence (risk ratio (RR) 0.26, 5897 participants, low-certainty evidence) compared to no larviciding. The two CBA studies reported lower malaria prevalence during the intervention period (parasite prevalence RR 0.79, 95% confidence interval (CI) 0.71 to 0.89; 70,902 participants; low-certainty evidence). The Kenyan study also reported a reduction in the incidence of new malaria cases (RR 0.62, 95% CI 0.38 to 1.01; 720 participants; very low-certainty evidence).

For aquatic habitats of more than 1 km², the non-randomized cross-over trial using microbial larvicides did not detect an effect for malaria incidence (RR 1.58, 95% CI 0.94 to 2.65; 4226 participants), or parasite prevalence (RR 1.15, 95% CI 0.41 to 3.20; 3547 participants); both were very low-certainty evidence. The Gambia trial also reported the mean haemoglobin level, and there was no difference across the four comparisons (mean difference –0.13, 95% CI –0.40 to 0.13; 3586 participants).

We were unable to summarize or pool entomological outcomes due to unreported and missing data.