Oral versus intravenous chemotherapy for colorectal cancer

Background

Intravenous (IV) fluoropyrimidines are an essential part of chemotherapy treatment for colorectal cancer (CRC). Patients prefer tablets as long as they work as well and are as safe as IV treatment, because they are easier to take and are more convenient.

Review question

We compared the effects of oral and IV fluoropyrimidine chemotherapy in patients with CRC who were treated with the aim of cure, or who were treated with palliative chemotherapy because the cancer could not be removed by surgery or was metastatic (it had spread from the place where it originated to other places in the body).

Study characteristics

The evidence is current to June 2016. We identified 44 randomised controlled trials involving 23,150 patients which compared oral and IV fluoropyrimidines. All studies included both male and female patients, and no studies included individuals younger than 18 years of age.

Key results

Among patients with CRC who were treated with the aim of cure, disease-free survival (DFS) and overall survival (OS) did not differ between those who received oral versus IV treatment. In terms of severe side effects, patients who received oral treatment and those who received IV treatment had a similar risk of diarrhoea. Patients who received oral treatment were more likely to develop hand and foot rash but were less likely to have lowered white cell counts (neutropenia) than patients who received IV treatment.

In patients with CRC whose cancer was treated with palliative chemotherapy, overall, those who received oral treatment had worse progression-free survival (PFS) than those who received IV treatment. Use of two formulations of oral therapy (UFT or Ftorafur, and eniluracil with oral 5-fluorouracil (5-FU)) led to worse PFS in patients who received oral compared with IV treatment. Use of three other formulations of oral therapy (capecitabine, S-1, and doxifluridine) led to similar PFS in patients who received oral compared with IV treatment. OS did not differ between patients treated with oral versus IV fluoropyrimidines. In terms of severe side effects, patients who received oral treatment were more likely to develop diarrhoea and hand and foot rash but were less likely to have lowered white cell counts than those who received IV treatment.

Quality of the evidence

Review authors assessed the quality of evidence for the main outcomes in this review (DFS and PFS) as moderate; the key reason for downgrading quality involved issues with study design. The quality of evidence for OS in patients who were treated with the aim of cure and in patients who were treated with palliative chemotherapy was high. The quality of evidence for side effects ranged from very low to moderate, and was downgraded because of issues with study design, dissimilar results across studies, or not enough data.

Authors' conclusions: 

Results of this review should provide confidence that treatment for CRC with most of the oral fluoropyrimidines commonly used in current clinical practice is similarly efficacious to treatment with IV fluoropyrimidines. Treatment with eniluracil with oral 5-FU was associated with inferior PFS and OS among participants treated with palliative intent for CRC, and eniluracil is no longer being developed. Oral and IV fluoropyrimidines have different patterns of side effects; future research may focus on determining the basis for these differences.

Read the full abstract...
Background: 

Patients prefer oral to intravenous (IV) palliative chemotherapy, provided that oral therapy is not less effective. We compared the efficacy and safety of oral and IV fluoropyrimidines for treatment of colorectal cancer (CRC).

Objectives: 

To compare the effects of oral and IV fluoropyrimidine chemotherapy in patients treated with curative or palliative intent for CRC.

Search strategy: 

We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 5), along with OVID MEDLINE, OVID Embase, and Web of Science databases, in June 2016. We also searched five clinical trials registers, several conference proceedings, and reference lists from study reports and systematic reviews. We contacted pharmaceutical companies to identify additional studies.

Selection criteria: 

We included randomised controlled trials (RCTs) comparing oral and IV fluoropyrimidine chemotherapy in patients treated with curative or palliative intent for CRC.

Data collection and analysis: 

Three review authors extracted data and assessed risk of bias independently. We assessed the seven domains in the Cochrane 'Risk of bias' tool and three additional domains: schedules of outcome assessment and/or follow-up; use of intention-to-treat analysis; and baseline comparability of treatment arms.

Main results: 

We included nine RCTs (total of 10,918 participants) that examined treatment with curative intent for CRC with neoadjuvant and/or adjuvant chemotherapy. We included 35 RCTs (total of 12,592 participants) that examined treatment with palliative intent for inoperable advanced or metastatic CRC with chemotherapy (31 first-line studies, two second-line studies, and two studies of first- or second-line chemotherapy). All studies included male and female participants, and no studies included participants younger than 18 years of age.

Patients treated with curative intent for CRC with neoadjuvant and/or adjuvant chemotherapy

• Disease-free survival (DFS): DFS did not differ between participants treated with oral versus IV fluoropyrimidines (hazard ratio (HR) 0.93, 95% confidence interval (CI) 0.87 to 1.00; seven studies, 8903 participants; moderate-quality evidence).

• Overall survival (OS): OS did not differ between participants treated with oral versus IV fluoropyrimidines (HR 0.92, 95% CI 0.84 to 1.00; seven studies, 8902 participants analysed; high-quality evidence).

• Grade ≥ 3 adverse events (AEs): Participants treated with oral fluoropyrimidines experienced less grade ≥ 3 neutropenia/granulocytopenia (odds ratio (OR) 0.14, 95% CI 0.11 to 0.16; seven studies, 8087 participants; moderate-quality evidence), stomatitis (OR 0.21, 95% CI 0.14 to 0.30; five studies, 4212 participants; low-quality evidence), and any grade ≥ 3 AEs (OR 0.82, 95% CI 0.74 to 0.90; five studies, 7741 participants; low-quality evidence). There was more grade ≥ 3 hand foot syndrome (OR 4.59, 95% CI 2.97 to 7.10; five studies, 5731 participants; low-quality evidence) in patients treated with oral fluoropyrimidines. There were no differences between participants treated with oral versus IV fluoropyrimidines in occurrence of grade ≥ 3 diarrhoea (OR 1.12, 95% CI 0.99 to 1.25; nine studies, 9551 participants; very low-quality evidence), febrile neutropenia (OR 0.59, 95% CI 0.18 to 1.90; four studies, 2925 participants; low-quality evidence), vomiting (OR 1.05, 95% CI 0.83 to 1.34; eight studies, 9385 participants; low-quality evidence), nausea (OR 1.21, 95% CI 0.97 to 1.51; seven studies, 9233 participants; low-quality evidence), mucositis (OR 0.64, 95% CI 0.25 to 1.62; four studies, 2233 participants; very low-quality evidence), and hyperbilirubinaemia (OR 1.67, 95% CI 0.52 to 5.38; three studies, 2757 participants; very low-quality evidence).

Patients treated with palliative intent for inoperable advanced or metastatic CRC with chemotherapy

• Progression-free survival (PFS): Overall, PFS was inferior in participants treated with oral versus IV fluoropyrimidines (HR 1.06, 95% CI 1.02 to 1.11; 23 studies, 9927 participants; moderate-quality evidence). Whilst PFS was worse in participants treated with oral compared with IV fluoropyrimidines when UFT/Ftorafur or eniluracil with oral 5-fluorouracil (5-FU) was used, PFS did not differ between individuals treated with oral versus IV fluoropyrimidines when capecitabine, doxifluridine, or S-1 was used.

• OS: Overall, OS did not differ between participants treated with oral versus IV fluoropyrimidines (HR 1.02, 95% CI 0.99 to 1.05; 29 studies, 12,079 participants; high-quality evidence). OS was inferior in participants treated with oral versus IV fluoropyrimidines when eniluracil with oral 5-fluorouracil (5-FU) was used.

• Time to progression (TTP): TTP was inferior in participants treated with oral versus IV fluoropyrimidines (HR 1.07, 95% CI 1.01 to 1.14; six studies, 1970 participants; moderate-quality evidence).

• Objective response rate (ORR): ORR did not differ between participants treated with oral versus IV fluoropyrimidines (OR 0.98, 95% CI 0.90 to 1.06; 32 studies, 11,115 participants; moderate-quality evidence).

• Grade ≥ 3 AEs: Participants treated with oral fluoropyrimidines experienced less grade ≥ 3 neutropenia/granulocytopenia (OR 0.17, 95% CI 0.15 to 0.18; 29 studies, 11,794 participants; low-quality evidence), febrile neutropenia (OR 0.27, 95% CI 0.21 to 0.36; 19 studies, 9407 participants; moderate-quality evidence), stomatitis (OR 0.26, 95% CI 0.20 to 0.33; 21 studies, 8718 participants; low-quality evidence), mucositis (OR 0.17, 95% CI 0.12 to 0.24; 12 studies, 4962 participants; low-quality evidence), and any grade ≥ 3 AEs (OR 0.83, 95% CI 0.74 to 0.94; 14 studies, 5436 participants; low-quality evidence). There was more grade ≥ 3 diarrhoea (OR 1.66, 95% CI 1.50 to 1.84; 30 studies, 11,997 participants; low-quality evidence) and hand foot syndrome (OR 3.92, 95% CI 2.84 to 5.43; 18 studies, 6481 participants; moderate-quality evidence) in the oral fluoropyrimidine arm. There were no differences between oral and IV fluoropyrimidine arms in terms of grade ≥ 3 vomiting (OR 1.18, 95% CI 1.00 to 1.40; 23 studies, 9528 participants; low-quality evidence), nausea (OR 1.16, 95% CI 0.99 to 1.36; 25 studies, 9796 participants; low-quality evidence), and hyperbilirubinaemia (OR 1.62, 95% CI 0.99 to 2.64; nine studies, 2699 participants; low-quality evidence).

Share/Save