Systemic administration of local anesthetic agents to relieve neuropathic pain

Intravenous lidocaine and oral derivatives relieve pain from damage to the nervous system (neuropathic pain). In early reports, intravenous lidocaine and its oral analogs mexiletine and tocainide relieved neuropathic pain, a type of pain caused by disease in the nervous system. However, the evidence was conflicting. The authors reviewed all randomized studies comparing these drugs with placebo or with other analgesics and found that: local anesthetics were superior to placebo in decreasing intensity of neuropathic pain; limited data showed no difference in efficacy or adverse effects between local anesthetics and carbamazepine, amantadine, gabapentin or morphine; local anesthetics had more adverse effects than placebo; and local anesthetics were safe.

Authors' conclusions: 

Lidocaine and oral analogs were safe drugs in controlled clinical trials for neuropathic pain, were better than placebo, and were as effective as other analgesics. Future trials should enroll specific diseases and test novel lidocaine analogs with better toxicity profiles. More emphasis is necessary on outcomes measuring patient satisfaction to assess if statistically significant pain relief is clinically meaningful.

Read the full abstract...
Background: 

Lidocaine, mexiletine, tocainide, and flecainide are local anesthetics which give an analgesic effect when administered orally or parenterally. Early reports described the use of intravenous lidocaine or procaine to relieve cancer and postoperative pain. Interest reappeared decades later when patient series and clinical trials reported that parenteral lidocaine and its oral analogs tocainide, mexiletine, and flecainide relieved neuropathic pain in some patients. With the recent publication of clinical trials with high quality standards, we have reviewed the use of systemic lidocaine and its oral analogs in neuropathic pain to update our knowledge, to measure their benefit and harm, and to better define their role in therapy.

Objectives: 

To evaluate pain relief and adverse effect rates between systemic local anesthetic-type drugs and other control interventions.

Search strategy: 

We searched MEDLINE (1966 through 15 May 2004), EMBASE (January 1980 to December 2002), Cancer Lit (through 15 December 2002), Cochrane Central Register of Controlled Trials (2nd Quarter, 2004), System for Information on Grey Literature in Europe (SIGLE), and LILACS, from January 1966 through March 2001. We also hand searched conference proceedings, textbooks, original articles and reviews.

Selection criteria: 

We included trials with random allocation, that were double blinded, with a parallel or crossover design. The control intervention was a placebo or an analgesic drug for neuropathic pain from any cause.

Data collection and analysis: 

We collected efficacy and safety data from all published and unpublished trials. We calculated combined effect sizes using continuous and binary data for pain relief and adverse effects as primary and secondary outcome measurements, respectively.

Main results: 

Thirty-two controlled clinical trials met the selection criteria; two were duplicate articles. The treatment drugs were intravenous lidocaine (16 trials), mexiletine (12 trials), lidocaine plus mexiletine sequentially (one trial), and tocainide (one trial). Twenty-one trials were crossover studies, and nine were parallel. Lidocaine and mexiletine were superior to placebo [weighted mean difference (WMD) = -11; 95% CI: -15 to -7; P < 0.00001], and limited data showed no difference in efficacy (WMD = -0.6; 95% CI: -7 to 6), or adverse effects versus carbamazepine, amantadine, gabapentin or morphine. In these trials, systemic local anesthetics were safe, with no deaths or life-threatening toxicities. Sensitivity analysis identified data distribution in three trials as a probable source of heterogeneity. There was no publication bias.