移至主內容

Modeling departures from normality in meta-analysis

Event date
- (10:00 - 11:00 BST) Check in your time zone
Image
Cochrane Learning Live

Random-effects meta-analysis typically assumes normally distributed study-specific effects, an assumption that may be unrealistic under certain conditions. This webinar explores models that relax this assumption and their ability to uncover underlying data structures, such as asymmetry and clustering, that may be obscured under the normal model. While summary estimates remain largely unaffected, these models are valuable exploratory tools in seemingly non-normal data.

The webinar is targeted at researchers and practitioners who are familiar with meta-analysis models, while remaining accessible to participants without a formal statistical background. The presentation emphasizes intuitive explanations and practical insights, making it suitable for a broad, interdisciplinary audience interested in evidence synthesis.


Presenter Bio

Dr. Kanella Panagiotopoulou specializes in evidence synthesis methodology, focusing on the development and application of advanced statistical models for meta-analysis. Kanella's research spans Frequentist and Bayesian frameworks, using parametric and semi-parametric approaches to explore heterogeneity across studies. Kanella also engages with large language models to further investigate heterogeneity in meta-analytic data, while promoting accessible implementation of flexible random-effects models in R.

我們對Cookie的使用

我們使用必要的 cookie 使我們的網站正常運作。我們還希望設置可選擇分析的 cookie,以幫助我們進行改進網站。除非您啟用它們,否則我們不會設置可選擇的 cookie。使用此工具將在您的設備上設置 cookie,以記住您的偏好。您隨時可以隨時通過點擊每個頁面下方的「Cookies 設置」連結來更改 Cookie 偏好。
有關我們使用 cookie 的更多詳細資訊,請參閱我們的 cookie 頁面

接受所有
配置