移至主內容

An argument-based approach to aggregation of evidence involving multiple outcome indicators

Event date
October 2016

This special methods webinar, part of the Cochrane Learning Live webinar series, is about new methods for aggregating evidence and may therefore particularly appeal to clinicians and to methods experts. No specific knowledge of evidence aggregation methods nor of statistical methods is assumed. 

Image
Cochrane Training: Learning Live
The webinar is presented by Professor Anthony Hunter (Professor of Artificial Intelligence, University College London) and Dr Matt Williams (Consultant Oncologist, Charing Cross Hospital / Imperial College London).  

The webinar was delivered in October 2016. Below you will find recordings of both presentations as well as copies of webinar slides for download [PDF].

More details

Computational models of argument are being developed to capture aspects of how we can handle incomplete and inconsistent information through the use of argumentation. In this webinar, we describe a novel approach to aggregating clinical evidence using a computational model of argument. The framework is a formal approach to synthesizing knowledge from clinical trials involving multiple outcome indicators. Based on the available evidence, arguments are generated for claiming that one treatment is superior, or equivalent, to another. Evidence comes from randomized clinical trials, systematic reviews, meta-analyses, network analyses, etc. Preference criteria over arguments are used that are based on the outcome indicators, and the magnitude of those outcome indicators, in the evidence. Meta-arguments attack (i.e they are counterarguments to) arguments that are based on weaker evidence. An evaluation criterion is used to determine which are the winning arguments, and thereby the recommendations for which treatments are superior. We have compared our approach with recommendations made in NICE Guidelines, and we have used our approach to publish a more refined systematic review of evidence presented in a Cochrane Review. Our approach has an advantage over meta-analyses and network analyses in that they aggregate evidence according to a single outcome indicator, whereas our approach combines evidence according to multiple outcome indicators.

Author information

    Hunter, Anthony; Williams, Matt; Jackie Chandler; Sambunjak, Dario; Watts, Chris

我們對Cookie的使用

我們使用必要的 cookie 使我們的網站正常運作。我們還希望設置可選擇分析的 cookie,以幫助我們進行改進網站。除非您啟用它們,否則我們不會設置可選擇的 cookie。使用此工具將在您的設備上設置 cookie,以記住您的偏好。您隨時可以隨時通過點擊每個頁面下方的「Cookies 設置」連結來更改 Cookie 偏好。
有關我們使用 cookie 的更多詳細資訊,請參閱我們的 cookie 頁面

接受所有
配置