Electromechanical-assisted training for improving arm function and disability after stroke

Review question

To assess the effects of electromechanical and robot-assisted arm and hand training for improving arm function in people who have had a stroke.

Background

More than two-thirds of people who have had a stroke have difficulties with reduced arm function, which can restrict a person's ability to perform everyday activities, reduce productivity, limit social activities, and lead to economic burden. Electromechanical and robot-assisted arm training uses specialised machines to assist rehabilitation in supporting shoulder, elbow, or hand movements. However, the role of electromechanical and robot-assisted arm training for improving arm function after stroke is unclear.

Study characteristics

We identified 34 trials (involving 1160 participants) up to March 2015 and included them in our review. Nineteen different electromechanical devices were described in the trials, which compared electromechanical and robot-assisted arm training with a variety of other interventions. Participants were between 21 to 80 years of age, the duration of the trials ranged from two to 12 weeks, the size of the trials was between eight and 127 participants, and the primary outcome differed between the included trials. Most of the trials were done in rehabilitation facilities in the USA.

Key results

Electromechanical and robot-assisted arm and hand training improved activities of daily living in people after stroke and function and muscle strength of the affected arm. As adverse events such as injuries and pain were seldom described, these devices can be applied as a rehabilitation tool, but we still do not know when or how often they should be used.

Quality of the evidence

The quality of the evidence was low to very low.

Authors' conclusions: 

People who receive electromechanical and robot-assisted arm and hand training after stroke might improve their activities of daily living, arm and hand function, and arm and hand muscle strength. However, the results must be interpreted with caution because the quality of the evidence was low to very low, and there were variations between the trials in the intensity, duration, and amount of training; type of treatment; and participant characteristics.

Read the full abstract...
Background: 

Electromechanical and robot-assisted arm training devices are used in rehabilitation, and may help to improve arm function after stroke.

Objectives: 

To assess the effectiveness of electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength in people after stroke. We also assessed the acceptability and safety of the therapy.

Search strategy: 

We searched the Cochrane Stroke Group's Trials Register (last searched February 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2015, Issue 3), MEDLINE (1950 to March 2015), EMBASE (1980 to March 2015), CINAHL (1982 to March 2015), AMED (1985 to March 2015), SPORTDiscus (1949 to March 2015), PEDro (searched April 2015), Compendex (1972 to March 2015), and Inspec (1969 to March 2015). We also handsearched relevant conference proceedings, searched trials and research registers, checked reference lists, and contacted trialists, experts, and researchers in our field, as well as manufacturers of commercial devices.

Selection criteria: 

Randomised controlled trials comparing electromechanical and robot-assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke.

Data collection and analysis: 

Two review authors independently selected trials for inclusion, assessed trial quality and risk of bias, and extracted data. We contacted trialists for additional information. We analysed the results as standardised mean differences (SMDs) for continuous variables and risk differences (RDs) for dichotomous variables.

Main results: 

We included 34 trials (involving 1160 participants) in this update of our review. Electromechanical and robot-assisted arm training improved activities of daily living scores (SMD 0.37, 95% confidence interval (CI) 0.11 to 0.64, P = 0.005, I² = 62%), arm function (SMD 0.35, 95% CI 0.18 to 0.51, P < 0.0001, I² = 36%), and arm muscle strength (SMD 0.36, 95% CI 0.01 to 0.70, P = 0.04, I² = 72%), but the quality of the evidence was low to very low. Electromechanical and robot-assisted arm training did not increase the risk of participant drop-out (RD 0.00, 95% CI -0.02 to 0.03, P = 0.84, I² = 0%) with moderate-quality evidence, and adverse events were rare.

Share/Save